Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Opt Express ; 32(4): 6366-6381, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439341

RESUMO

For the discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) 16/64 amplitude phase shift keying (APSK) system, the inevitable laser impairments including frequency offset (FO) and carrier phase noise (CPN) would cause different rotations of the received signal constellations. In addition, the combined effect of FO and amplifier spontaneous emission (ASE) noise induces the eigenvalue shift, accordingly the residual channel impairment (RCI) is inevitably yielded. To address the above problems, we deduce the joint impairment model of FO, CPN and RCI, and then propose a joint equalization scheme using two-stage cascaded extended Kalman filter (TSC-EKF) for these impairments. It performs frequency offset compensation in the first stage, subsequently carries out joint equalization of CPN and RCI in the second stage. Meanwhile, the minimum Euclidean distance and phase difference between the received symbols and the ideal 16/64APSK constellations are ingeniously fused to calculate the innovations of TSC-EKF. The effectiveness has been verified by 2 GBaud DS-NFDM 16/64 APSK simulations and DS-NFDM 16APSK transmission experiments. The results demonstrate that when performing the joint equalization of FO, CPN and RCI, the maximum FOE range of TSC-EKF scheme achieves 1.2 and 9.6 times as that of nonlinear frequency domain (NFD) scheme and fast Fourier transform -Like (FFT-Like) scheme, respectively. Furthermore, its maximum LW tolerance reaches 3.3 times as that of the M-th power scheme. Importantly, the complexity of TSC-EKF is 63.4% as that of NFD scheme and on an order of O(N).

2.
BMC Plant Biol ; 24(1): 193, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493089

RESUMO

Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.


Assuntos
Ipomoea batatas , Estresse Fisiológico , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética , Ipomoea batatas/metabolismo , RNA-Seq , Cloreto de Sódio/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
3.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473738

RESUMO

MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.


Assuntos
Proteínas de Domínio MADS , Solanum lycopersicum , Proteínas de Domínio MADS/genética , Flores/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo
4.
BMC Plant Biol ; 24(1): 156, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424529

RESUMO

BACKGROUND: bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS: Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS: These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.


Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Antocianinas/metabolismo , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Adv Sci (Weinh) ; 11(12): e2305682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225752

RESUMO

There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.


Assuntos
Gelatina , Perda Auditiva Provocada por Ruído , Metacrilatos , Camundongos , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/prevenção & controle , Niacinamida/uso terapêutico , NAD , Preparações de Ação Retardada/uso terapêutico , Porosidade , Microtomografia por Raio-X
6.
Plant Methods ; 20(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212839

RESUMO

Water dropwort (Oenanthe javanica (Blume) DC), an aquatic perennial plant from the Apiaceae family, rich in dietary fibert, vitamins, and minerals. It usually grows in wet soils and water. Despite accumulating the transcriptomic data, gene function research on water dropwort is still far behind than that of the other crops. The cucumber mosaic virus (CMV) induced gene silencing was established to study the functions of gene and microRNA (miRNA) in the water dropwort. CMV Fast New York strain (CMV-Fny) genomic RNAs 1, 2, and 3 were individually cloned into pCB301 vectors. We deleted part of the ORF 2b region and introduced recognition sites. A CMV-induced gene silencing vector was employed to suppress the expression of endogenous genes, including phytoene desaturase (PDS). In order to assess the efficacy of gene silencing, we also cloned conserved sequence of gibberellin insensitive dwarf (GID1) cDNA sequences into the vector and inoculated the water dropwort. The height of CMV-GID1-infected plants was marginally reduced as a result of GID1 gene silencing, and their leaves were noticeably longer and thinner. Additionally, we also used a CMV-induced silencing vector to analyze the roles of endogenous miRNAs. We used a short tandem target mimic approach to clone miR319 and miR396 from water dropwort into the CMV vector. Plants with CMV-miRNA infection were driven to exhibit the distinctive phenotypes. We anticipate that functional genomic research on water dropwort will be facilitated by the CMV-induced gene silencing technique.

7.
Opt Lett ; 48(21): 5707-5710, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910739

RESUMO

We propose an amplified spontaneous emission (ASE) noise mitigation scheme utilizing digital frequency offset loading (DFO-loading) for discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) systems. Firstly, based on the one-to-one mapping relationship between frequency offsets and eigenvalue positions, the transmitter side encodes 4-bit information onto 16 kinds of different digital frequency offsets. Then, a sliding window-assisted eigenvalue position (SWA-EP) decoding technology is further proposed to substitute the classical channel equalization and carrier phase recovery processes, with the purpose of recovering the original information. The numerical and experimental results demonstrate that, compared with b-coefficient 16 quadrature amplitude modulation (QAM) scheme, Q-factor gains are 2.1 dB under 15 dB optical signal-to-noise ratio (OSNR) and 1.8 dB after 800 km fiber transmission, respectively. Moreover, its complexity is only 0.6% of the b-coefficient scheme. The DFO-loading scheme offers an effective and low-complexity way to mitigate ASE noise of DS-NFDM system.

8.
Photodiagnosis Photodyn Ther ; 44: 103857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890810

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a gram-negative bacterium without spores, and it is one of the pathogens that easily cause secondary infectious diseases when human immune function is low. The purpose of this study is to explore the inhibitory effect of photodynamic antibacterial chemotherapy-induced by cationic porphyrin derivative on clinical P. aeruginosa and its mechanism. METHODS: The uptake of photosensitizer by P. aeruginosa and L929 cells was measured by an ultraviolet spectrophotometer. Effect of laser energy density on the bacterial activity of P. aeruginosa and post antibiotic effect were measured by bacterial suspension and tenfold dilution method. Flow cytometry and scanning electron microscopy were used to observe the activity and morphological changes of P. aeruginosa after PACT treatment. RESULTS: The uptake of Tetra-ATPP-Lys-by P. aeruginosa and L929 was shown as concentration-dependent and time-dependent. However the uptake of L929 cell had a clear difference with P. aeruginosa at the same time and concentration intervals(P < 0.05).The increasing laser energy density had a high inactivation effect of on P. aeruginosa at the same Tetra-ATPP-Lys-concentration(P < 0.05). Post-antibiotic effect of Tetra-ATPP-Lys -PACT was dose-dependent(P < 0.05). Bacterial viability which evaluated by the flow cytometry method demonstrated that the proportion of viable bacteria is decreased with the photosensitizer dose-dependent. The morphology and microstructure of P. aeruginosa after Tetra-ATPP-Lys -PACT was demonstrated by a scanning electron microscope(SEM). After PACT, the morphology of P. aeruginosa was rod-shaped, the outer membrane surface was rough, and the bacteria were dry flat, sunken, shrunk and deformed. CONCLUSIONS: Cationic porphyrin photosensitizer had a great damage effect on P. aeruginosa under the PACT, which can effectively destroy the microstructure of bacteria and lead to bacterial inactivation and death.


Assuntos
Fotoquimioterapia , Porfirinas , Infecções por Pseudomonas , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Pseudomonas aeruginosa , Porfirinas/farmacologia , Porfirinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
9.
Huan Jing Ke Xue ; 44(9): 5214-5221, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699839

RESUMO

Due to the wide sources of biomass raw materials and the lack of limits for the endogenous pollutants in biochar and their dosage, some biochar with high endogenous pollutants may be used for environmental remediation, which results in potential environmental risks. In this study, three biochars were prepared from the straws of Pennisetum sp. grown in clean, moderately polluted and highly polluted soils, respectively. The total endogenous copper (Cu) and cadmium (Cd), acid-soluble fraction, and persistent free radical (PFRs) distribution in biochars were investigated, and their biotoxicities were evaluated based on wheat root elongation inhibition rate and antioxidant enzyme activity. The results indicated that total Cu in Jiuniu biochar from the highly polluted soil and total Cd in Shuiquan biochar from the moderately-polluted soil were 3.73 and 4.43 times higher than that in Hongrang biochar from the clean soil, respectively. Moreover, acid-soluble Cu in Jiuniu biochar was 3.32 and 2.84 times higher than that in Shuiquan and Hongrang biochar, respectively, and acid-soluble Cd in Shuiquan and Jiuniu biochar was 7.95 and 5.11 times higher than that in Hongrang biochar, respectively. All three biochars had PFRs with adjacent oxygen atoms centered on carbon and followed the order of Hongrang>Jiuniu>Shuiquan. Three biochar leaching solutions significantly inhibited wheat root elongation but enhanced the enzyme activities of SOD, POD, and CAT for the wheat seedlings compared with that in the control. In particular, the highest inhibition rate (27.7%) was found in Jiuniu biochar. This study indicated that the interaction of endogenous heavy metals and PFRs in biochar exhibited significant biotoxicity to wheat seedlings. In the future, more attention should be paid to the potential environmental toxicity of endogenous pollutants from biochar to avoid new environmental pollution problems.


Assuntos
Poluentes Ambientais , Pennisetum , Cádmio/toxicidade , Poluição Ambiental , Antioxidantes , Plântula
10.
Front Neurol ; 14: 1219590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533475

RESUMO

Traumatic or non-traumatic spinal cord injury (SCI) can lead to severe disability and complications. The incidence of SCI is high, and the rehabilitation cycle is long, which increases the economic burden on patients and the health care system. However, there is no practical method of SCI treatment. Recently, transcranial magnetic stimulation (TMS), a non-invasive brain stimulation technique, has been shown to induce changes in plasticity in specific areas of the brain by regulating the activity of neurons in the stimulation site and its functionally connected networks. TMS is a new potential method for the rehabilitation of SCI and its complications. In addition, TMS can detect the activity of neural circuits in the central nervous system and supplement the physiological evaluation of SCI severity. This review describes the pathophysiology of SCI as well as the basic principles and classification of TMS. We mainly focused on the latest research progress of TMS in the physiological evaluation of SCI as well as the treatment of motor dysfunction, neuropathic pain, spasticity, neurogenic bladder, respiratory dysfunction, and other complications. This review provides new ideas and future directions for SCI assessment and treatment.

11.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108695

RESUMO

Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.


Assuntos
Capsicum , Glicogênio Fosforilase Muscular , Ácido Ascórbico/genética , Frutas/genética , Capsicum/genética , Galactose , Fosforilases , Regulação da Expressão Gênica de Plantas
12.
Br J Pharmacol ; 180(19): 2532-2549, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37005797

RESUMO

BACKGROUND AND PURPOSE: Our previous research showed that ferroptosis plays a crucial role in the pathophysiology of PM2.5-induced lung injury. The present study aimed to investigate the protective role of the Nrf2 signalling pathway and its bioactive molecule tectoridin in PM2.5-induced lung injury by regulating ferroptosis. EXPERIMENTAL APPROACH: We examined the regulatory effect of Nrf2 on ferroptosis in PM2.5-induced lung injury and Beas-2b cells using Nrf2-knockout (KO) mice and Nrf2 siRNA transfection. The effects and underlying mechanisms of tectoridin on PM2.5-induced lung injury were evaluated in vitro and in vivo. KEY RESULTS: Nrf2 deletion increased iron accumulation and ferroptosis-related protein expression in vivo and vitro, further exacerbating lung injury and cell death in response to PM2.5 exposure. Tectoridin activated Nrf2 target genes and ameliorated cell death caused by PM2.5. In addition, tectoridin prevented lipid peroxidation, iron accumulation and ferroptosis in vitro, but in siNrf2-treated cells, these effects almost disappeared. In addition, tectoridin effectively mitigated PM2.5-induced respiratory system damage, as evaluated by HE, PAS, and inflammatory factors. Tectoridin also augmented the antioxidative Nrf2 signalling pathway and prevented changes in ferroptosis-related morphological and biochemical indicators, including MDA levels, GSH depletion and GPX4 and xCT downregulation, in PM2.5-induced lung injury. However, the effects of tectoridin on ferroptosis and respiratory injury were almost abolished in Nrf2-KO mice. CONCLUSION AND IMPLICATIONS: Our data proposed the protective effect of Nrf2 activation on PM2.5-induced lung injury by inhibiting ferroptosis-mediated lipid peroxidation and highlight the potential of tectoridin as a PM2.5-induced lung injury treatment.


Assuntos
Ferroptose , Lesão Pulmonar , Animais , Camundongos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Fator 2 Relacionado a NF-E2 , Camundongos Knockout , Material Particulado/toxicidade , Ferro
13.
Front Endocrinol (Lausanne) ; 14: 1134318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008902

RESUMO

Objective: A large body of literature has demonstrated the significant efficacy of antibiotic bone cement in treating infected diabetic foot wounds, but there is less corresponding evidence-based medical evidence. Therefore, this article provides a meta-analysis of the effectiveness of antibiotic bone cement in treating infected diabetic foot wounds to provide a reference basis for clinical treatment. Methods: PubMed, Embase, Cochrane library, Scoup, China Knowledge Network (CNKI), Wanfang database, and the ClinicalTrials.gov were searched, and the search time was from the establishment of the database to October 2022, and two investigators independently. Two investigators independently screened eligible studies, evaluated the quality of the literature using the Cochrane Evaluation Manual, and performed statistical analysis of the data using RevMan 5.3 software. Results: A total of nine randomized controlled studies (n=532) were included and, compared with the control group, antibiotic bone cement treatment reduced the time to wound healing (MD=-7.30 95% CI [-10.38, -4.23]), length of hospital stay (MD=-6.32, 95% CI [-10.15, -2.48]), time to bacterial conversion of the wound (MD=-5.15, 95% CI [-7.15,-2.19]), and the number of procedures (MD=-2.35, 95% CI [-3.68, -1.02]). Conclusion: Antibiotic bone cement has significant advantages over traditional treatment of diabetic foot wound infection and is worthy of clinical promotion and application. Systematic review registration: PROSPERO identifier, CDR 362293.


Assuntos
Antibacterianos , Cimentos Ósseos , Pé Diabético , Infecção dos Ferimentos , Humanos , Cimentos Ósseos/uso terapêutico , Antibacterianos/uso terapêutico , Pé Diabético/microbiologia , Pé Diabético/terapia , Diabetes Mellitus , Cicatrização
14.
Technol Cancer Res Treat ; 22: 15330338231164883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36991566

RESUMO

PURPOSE: Clinical target volumes (CTVs) and organs at risk (OARs) could be autocontoured to save workload. This study aimed to assess a convolutional neural network for automatic and accurate CTV and OARs in prostate cancer, while comparing possible treatment plans based on autocontouring CTV to clinical treatment plans. METHODS: Computer tomography (CT) scans of 217 patients with locally advanced prostate cancer treated at our hospital were retrospectively collected and analyzed from January 2013 to January 2019. A deep learning-based method, CUNet, was used to delineate CTV and OARs. A training set of 195 CT scans and a test set of 28 CT scans were randomly chosen from the dataset. The mean Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (95HD), and subjective evaluation were used to evaluate the performance of this strategy. Predetermined evaluation criteria were used to grade treatment plans, and percentage errors for clinical doses to the planned target volume (PTV) and OARs were calculated. RESULTS: The mean DSC and 95HD values of the defined CTVs were (0.84 ± 0.05) and (5.04 ± 2.15) mm, respectively. The average delineation time was < 15 s for each patient's CT scan. The overall positive rates for clinicians A and B were 53.15% versus 46.85%, and 54.05% versus 45.95%, respectively (P > .05) when CTV outlines from CUNet were blindly chosen and compared with the ground truth (GT). Furthermore, 8 test patients were randomly chosen to design the predicted plan based on the autocontouring CTVs and OARs, demonstrating acceptable agreement with the clinical plan: average absolute dose differences in mean value of D2, D50, D98, Dmax, and Dmean for PTV were within 0.74%, and average absolute volume differences in mean value of V45 and V50 for OARs were within 3.4%. CONCLUSION: Our results revealed that the CTVs and OARs for prostate cancer defined by CUNet were close to the GT. CUNet could halve the time spent by radiation oncologists in contouring, demonstrating the potential of the novel autocontouring method.


Assuntos
Neoplasias da Próstata , Planejamento da Radioterapia Assistida por Computador , Masculino , Humanos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Redes Neurais de Computação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
15.
Brain Pathol ; 33(4): e13157, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36974636

RESUMO

Mitochondrial encephalomyopathies (ME) are frequently associated with mutations of mitochondrial DNA, but the pathogenesis of a subset of ME (sME) remains elusive. Here we report that haploinsufficiency of a mitochondrial inner membrane protein, Mic60, causes progressive neurological abnormalities with insulted mitochondrial structure and neuronal loss in mice. In addition, haploinsufficiency of Mic60 reduces mitochondrial membrane potential and cellular ATP production, increases reactive oxygen species, and alters mitochondrial oxidative phosphorylation complexes in neurons in an age-dependent manner. Moreover, haploinsufficiency of Mic60 compromises brain glucose intake and oxygen consumption in mice, resembling human ME syndrome. We further discover that MIC60 protein expression declined significantly in human sME, implying that insufficient MIC60 may contribute for pathogenesis of human ME. Notably, systemic administration of antioxidant N-acetylcysteine largely reverses mitochondrial dysfunctions and metabolic disorders in haplo-insufficient Mic60 mice, also restores neurological abnormal symptom. These results reveal Mic60 is required in the maintenance of mitochondrial integrity and function, and likely a potential therapeutics target for mitochondrial encephalomyopathies.


Assuntos
Encefalomiopatias Mitocondriais , Animais , Camundongos , Humanos , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial , Antioxidantes
16.
Nat Commun ; 14(1): 1657, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964137

RESUMO

Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.


Assuntos
Células Ciliadas Auditivas , Síndromes de Usher , Humanos , Células Ciliadas Auditivas/metabolismo , Tornozelo , Mecanotransdução Celular , Proteínas de Transporte/metabolismo , Estereocílios/metabolismo , Síndromes de Usher/genética , Cabelo/metabolismo
17.
Front Plant Sci ; 14: 1140727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895872

RESUMO

DNA-binding with one finger (Dof) transcription factors play a crucial role in plant abiotic stress regulatory networks, although massive Dofs have been systematically characterized in plants, they have not been identified in the hexaploid crop sweetpotato. Herein, 43 IbDof genes were detected to be disproportionally dispersed across 14 of the 15 chromosomes of sweetpotato, and segmental duplications were discovered to be the major driving force for the expansion of IbDofs. The collinearity analysis of IbDofs with their related orthologs from eight plants revealed the potential evolutionary history of Dof gene family. Phylogenetic analysis displayed that IbDof proteins were assigned into nine subfamilies, and the regularity of gene structures and conserved motifs was consistent with the subgroup classification. Additionally, five chosen IbDof genes were shown to be substantially and variably induced under various abiotic conditions (salt, drought, heat, and cold), as well as hormone treatments (ABA and SA), according to their transcriptome data and qRT-PCR experiments. Consistently, the promoters of IbDofs contained a number of cis-acting elements associated with hormone and stress responses. Besides, it was noted that IbDof2 had transactivation activity in yeasts, while IbDof-11/-16/-36 did not, and protein interaction network analysis and yeast two-hybrid experiments revealed a complicated interaction connection amongst IbDofs. Collectively, these data lay a foundation for further functional explorations of IbDof genes, especially with regards to the possible application of multiple IbDof members in breeding the tolerant plants.

18.
J Integr Plant Biol ; 65(6): 1585-1601, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36738228

RESUMO

Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Serina C-Palmitoiltransferase/metabolismo , Arabidopsis/metabolismo , Fosforilação , Esfingolipídeos/metabolismo , Proteínas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Arabidopsis/metabolismo
19.
Front Plant Sci ; 14: 1128911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844086

RESUMO

Lily (Lilium spp. and hybrids) is an important cut flower crop worldwide. Lily flowers have large anthers, which release a large amount of pollen that stains the tepals or clothing and thus can affect the commercial value of cut flowers. In this study, lily Oriental 'Siberia' was used to investigate the regulatory mechanism of lily anther development, which may provide information to prevent pollen pollution in the future. Based on the flower bud length, anther length and color, and anatomical observations, lily anther development was categorized into five stages: green (G), green-to-yellow 1 (GY1), green-to-yellow 2 (GY2), yellow (Y), and purple (P). Total RNA was extracted from the anthers at each stage for transcriptomic analysis. A total of 268.92-Gb clean reads were generated, and 81,287 unigenes were assembled and annotated. The number of differentially expressed genes (DEGs) and unique genes were largest for the pairwise comparison between the G and GY1 stages. The G and P samples were clustered separately, whereas the GY1, GY2, and Y samples were clustered together in scatter plots from a principal component analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs detected in the GY1, GY2, and Y stages revealed that the pectin catabolic process, hormone levels, and phenylpropanoid biosynthesis were enriched. The DEGs associated with jasmonic acid biosynthesis and signaling were highly expressed at the early stages (G and GY1), whereas the DEGs associated with phenylpropanoid biosynthesis were mainly expressed in the intermediate stages (GY1, GY2, and Y). The DEGs involved in the pectin catabolic process were expressed at advanced stages (Y and P). Cucumber mosaic virus-induced gene silencing of LoMYB21 and LoAMS caused a strongly inhibited anther dehiscence phenotype, but without affecting the development of other floral organs. These results provide novel insights for understanding the regulatory mechanism of anther development in lily and other plants.

20.
Redox Biol ; 59: 102587, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608590

RESUMO

The increasing abundance of fine particulate matter (PM2.5) in the environment has increased susceptibility to acute exacerbation of COPD (AECOPD). During PM2.5 exposure, excessive reactive oxygen species (ROS) production triggers a redox imbalance, which contributes to damage to organelles and disruption of homeostasis. At present, there are limited data on whether NOX4/Nrf2 redox imbalance increases susceptibility to acute exacerbation of COPD (AECOPD), and the underlying mechanism is unclear. Therefore, the current study was aimed to evaluate the role of NOX4/Nrf2 redox balance on AECOPD induced by PM2.5-CS-exposure. Here, we report that PM2.5 exacerbates cytotoxicity by enhancing NOX4/Nrf2 redox imbalance-mediated mitophagy. First, exposure to a low-dose of PM2.5 (200 µg/ml) significantly exacerbated oxidative stress and mitochondrial damage by increasing the ROS overproduction, enhancing the excessive NOX4/Nrf2 redox imbalance, decreasing the mitochondrial membrane potential (MMP), and enhancing the mitochondrial fragmentation that were caused by a low-dose of CSE (2.5%). Second, coexposure to PM2.5 and CSE (PM2.5-CSE) induced excessive mitophagy. Third, PM2.5 exacerbated CS-induced COPD, as shown by excessive inflammatory cell infiltration, inflammatory cytokine production and mucus hypersecretion, goblet cell hyperplasia, NOX4/Nrf2 redox imbalance, and mitophagy, these effects triggered excessive ROS production and mitochondrial damage in mice. Mechanistically, PM2.5-CS-induced excessive levels of mitophagy by triggering redox imbalance, leading to greater cytotoxicity and AECOPD; however, reestablishing the NOX4/Nrf2 redox balance via NOX4 blockade or mitochondria-specific ROS inhibitor treatment alleviated this cytotoxicity and ameliorated AECOPD. PM2.5 may exacerbate NOX4/Nrf2 redox imbalance and subsequently enhance mitophagy by increasing the ROS and mito-ROS levels, thereby increasing susceptibility to AECOPD.


Assuntos
Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Espécies Reativas de Oxigênio/farmacologia , Mitofagia , Doença Pulmonar Obstrutiva Crônica/etiologia , Material Particulado/toxicidade , Oxirredução , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...